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Constitutive Relations

The analysis of stress and strains - equations of
motion; and strain-displacement relationships
apply to any, regardless of the material properties.

Since the response depends on the material,
supplemental relations (constitutive relations)
representing the type of material are needed.

Constitutive relations are semi-empirical: based
on experimental observation.

Relations between stress components
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Definitions

Homogeneity

A material property is called z
homogeneous if it does not T
change from point to point

in the body (i.e., it is invariant i
under coordinate )/x
translation).
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Isotropy

A material property is called isotropic
if it does not change with direction

(i.e., it is invariant under coordinate i
rotation). ¥x'

Definitions

Isotropy

A material property is called isotropic
if it does not change with direction

(i.e., it is invariant under coordinate
rotation).

Elasticity

The material is called elastic if

its loading and unloading {:"
curves coincide.




Definitions

Elasticity

The material is called elastic if
its loading and unloading
curves coincide.

Linearity

Refers to linear dependence of
stresses on strains.

Definitions

Nonlinear Material Response
* Nonlinear elastic response

« single-valued relationship
between stresses and strains

* |nelastic response
« time independent

« time dependent
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Definitions

* Inelastic response
« time independent

« time dependent
0] e} (&
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Generally, more than one material model is needed

for the entire stress-strain-temperature range of
interest.
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Generalized Hooke's Law

Hooke's Law for One Dimensional Stress / Strain State

stress and strain
E = Young's modulus
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where G , € = uniaxial mechanical :
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Generalized Hooke's Law

Generalized Hooke's Law
* For linearly elastic isotropic
material
* Linear (extensional) strain
in the x direction, €x

Z associated
with
y
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Generalized Hooke's Law

g 2z ,:. Shearing strain in plane xy
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Generalized Hooke's Law

where vy = Poisson's ratio, r
G = Shear modulus 3
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Linear strains Shearin strains

Comments on Generalized Hooke's Law

¢ For linearly elastic isotropic materials

* Extensional strains are associated
with normal stresses

 Shearing strain in each of the
coordinate planes is associated
with the shearing stress on the
same plane
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Generalized Hooke's Law

Comments on Generalized Hooke's Law

Normal Shear

* Two independent material Stress Stress
coefficients

E = Young's modulus

L = Poisson’s ratio

G = shear modulus
=E/2(1+v)

Isotrople

* Anisotropic mechanical
properties

» extensional and shear
effects are coupled

i
i Anisotroplc

Normal Shear
Stress Stress
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Anisotropic

Generalized Hooke's Law

Comments on Generalized Hooke's Law

Narmal Shear

* Anisotropic mechanical Stress Stress
properties
« extensional and shear
effects are coupled

Isotropic

* For nonhomogeneous
materials, E and v are
functions of the
coordinates.

i Anisotropic




Generalized Hooke's Law

* The relations shown apply for the case of strains
and stresses caused by mechanical loading (not
for thermal, magnetic and/or electric fields).

Adding the first three equations:
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which is a relation between the volumetric
strain and volumetric stress components.




>

strain Energy and Complementary |

Strain Energy Density Functions

For elastic materials and uniaxial
stress state

ce=U+C[H

U = strain energy density (strain
energy per unit volume)

= | od o

C = complementary strain energy dci
density (complementary strain
energy per unit volume)
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Strain Energy and Complementary |

Strain Energy Density Functions

U = strain energy density (strain O,
:| energy per unit volume)

=f0'd8

C = complementary strain energy
density (complementary strain
energy per unit volume) IS
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strain Energy and Complementary |

Strain Energy Density Functions
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* For the case of pure shear -
linearly elastic materials
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* For linearly elastic materials
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Strain Energy and Complementary

Strain Energy Density Functions

* For the three-dimensional stress state, the strain
energy density, and the complementary strain
energy density are given by:
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Linear strains Shearing strains

strain Energy and Complementary
Strain En ergy Densit:y Functions
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Strain Energy and Complementary
Strain Energy Density Functions

] Llnear strains Shearln strains

® Total strain energy and total

complementary strain energy are
given by:

=fUdv

6=J;0dv

Decomposition of Strain Enet;};y Density '
into Volumetric an
Distortional Components

* The principal stresses and strains can be

decomposed as follows: ottt el
directions 1
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Decomposition of Strain Ener&qy Density

_into Volumeftric an
Distortional Components

Analogously,
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Decomposition of Si:rain_Enet;;;y Density '
_Into Volumetric an
Distortional Components

For linearly elastic materials

U= % (o' &'+ o" e+ oM g)

= Uyo + Ugie

where |U, . = 1 Vi principal

vol. = 6

but, for isotropic materials
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Decomposition of Strain Energy Density

_into Volumeftric an
Distortional Components

Therefore,
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principal
directions

principal planes

Decomposition of Si:rain_Enet;;;y Density '
_Into Volumetric an
Distortional Components

Therefore,
Udist. = U - Uvol.

principal planes




Thermal Strains and

Thermal Stresses

Hooke's Law for One Dimensional Stress / Strain State
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where

€ is the total strain T m P %
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OLT is the thermal strain

O is related to the mechanical strain
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